Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice
نویسندگان
چکیده
Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose LPS- induced severe ARDS in mice.
منابع مشابه
KLHDC10 Deficiency Protects Mice against TNFα-Induced Systemic Inflammation
Systemic inflammatory response syndrome (SIRS) is a form of fatal acute inflammation for which there is no effective treatment. Here, we revealed that the ablation of Kelch domain containing 10 (KLHDC10), which we had originally identified as an activator of Apoptosis Signal-regulating Kinase 1 (ASK1), protects mice against TNFα-induced SIRS. The disease development of SIRS is mainly divided in...
متن کاملActors of necroptosis scenario in cell\'s scene
Necroptosis, as a novel concept, has been recently introduced in scientific literature. Much of our knowledge about necroptosis comes from ligation of tumor necrosis factor-α to its receptor, TNF receptor 1. Receptor-interacting protein kinase 1, receptor-interacting protein kinase 3 and its substrate, the pseudokinase mixed lineage kinase domain-like protein, have been comprehensively st...
متن کاملAndrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-κB pathways
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a severe, life-threatening medical condition characterized by widespread inflammation in the lungs, and is a significant source of morbidity and mortality in the patient population. New therapies for the treatment of ALI are desperately needed. In the present study, we examined the effect of andrographolide sulfonate, a wa...
متن کاملSpred-2 Deficiency Exacerbates Lipopolysaccharide-Induced Acute Lung Inflammation in Mice
BACKGROUND Acute respiratory distress syndrome (ARDS) is a severe and life-threatening acute lung injury (ALI) that is caused by noxious stimuli and pathogens. ALI is characterized by marked acute inflammation with elevated alveolar cytokine levels. Mitogen-activated protein kinase (MAPK) pathways are involved in cytokine production, but the mechanisms that regulate these pathways remain poorly...
متن کاملEmodin Ameliorates LPS-Induced Acute Lung Injury, Involving the Inactivation of NF-κB in Mice
Acute lung injury (ALI) and its severe manifestation of acute respiratory distress syndrome (ARDS) are well-known illnesses. Uncontrolled and self-amplified pulmonary inflammation lies at the center of the pathology of this disease. Emodin, the bio-active coxund of herb Radix rhizoma Rhei, shows potent anti-inflammatory properties through inactivation of nuclear factor-κB (NF-κB). The aim of th...
متن کامل